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PERSPECTIVE

Toward a new vaccine for pertussis
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To overcome the limitations of the current pertussis vaccines, those of limited duration of action and failure to induce direct killing of
Bordetella pertussis, a synthetic scheme was devised for preparing a conjugate vaccine composed of the Bordetella bronchiseptica core
oligosaccharide with one terminal trisaccharide to aminooxylated BSA via their terminal ketodeoxyoctanate residues. Conjugate-induced
antibodies, by a fraction of an estimated human dose injected into young outbred mice as a saline solution, were bactericidal against
B. pertussis, and their titers correlated with their ELISA values. The carrier protein is planned to be genetically altered pertussis toxoid. Such
conjugates are easy to prepare, stable, and should add both to the level and duration of immunity induced by current vaccine-induced pertussis
antibodies and reduce the circulation of B. pertussis.

new pertussis vaccine | lipooligosaccharide conjugate

Pertussis, a highly contagious respiratory
disease, has been the subject of research
worldwide since its cause, Bordetella pertussis,
was discovered in 1906 (1). However, despite
a century of study in the laboratory and clinic
and widespread use of the acellular vaccine
for infants and young adults (2, 3), there is
yet no agreement about a definition of im-
munity to pertussis, an entirely satisfactory
vaccine, or an explanation for outbreaks
throughout the world (4–7). Implicated as
causes of these outbreaks are an increased
awareness of the disease, better diagnostic
tools, improved surveillance, waning vac-
cine-induced immunity, mutations in B.
pertussis antigens, and low immunization
rates, some due to exemptions from vacci-
nation. Is there an increased incidence of
pertussis in the United States in addition to
the renewed recognition of pertussis in older
children and adults? Many have not consid-
ered the low vaccination coverage and booster
immunization of unregistered immigrants and
their children, especially in large cities, as a
cause of these outbreaks (8). However, defi-
ciencies of the current acellular vaccine is in
our opinion the most important factor in
causing these outbreaks.
To provide an improved vaccine, we

review the development of pertussis vaccines
(9). Pertussis as a distinct, highly contagious,
and serious disease has been known for cen-
turies. In the 1930s, it was the most common
cause of death in children in the United
States (10). Soon after the discovery of
B. pertussis as the causative organism, scien-
tists evaluated the efficacy of vaccines com-
posed of B. pertussis suspended in rabbit

blood made by T. Madsen, Serum Institute
of Denmark, during an epidemic in 1929
in the Faroe Islands (11). The vaccine was
administered i.m. to children and young
adults. Surveillance was maintained for 2 y,
and the results showed 6 deaths due to per-
tussis among 3,020 vaccinees and 26 among
1,027 nonvaccinees. Similar rates were ob-
tained for mild and moderate cases. This
study showed it was possible to prevent per-
tussis by vaccination. Soon thereafter, a sim-
ilar study was conducted by L. W. Sauer at
Northwestern University (Chicago, IL) (12).
Eight strains of B. pertussis were grown on
Bordet media made with human blood and
then inactivated with phenol. The vaccines con-
tained 6–7 × 107 organisms/mL, and 1 mL
was injected s.c. three to eight times into more
than 300 nonimmune children. Temperatures
up to 102 °F, lasting 2 d, occurred in most
recipients. Clinical data, collected over 3 y, sug-
gested efficacy of the vaccination.
During the late 1930s, several firms in the

United States and Europe prepared pertussis
vaccines, but there was no information about
their standardization or clinical data. Pio-
neers in this field, Kendrick and Eldering
at the Michigan State Board of Health,
described an assay using intracerebral chal-
lenge with B. pertussis of mice immunized
by i.p. injection of a test vaccine (13). Stan-
dardization of this procedure by Pittman
and colleagues at the National Institutes
of Health revolutionized the field, because
the immunogenicity of these vaccines could
now be expressed in units (14, 15). Soon,
manufacturers combined these cellular per-
tussis vaccines with diphtheria (DTx) and

tetanus tox-oids (TTx) adsorbed onto alum
(DTPads). DTPads was recommended for
routine immunization of infants and 6 y olds.
These cellular vaccines significantly reduced
the incidence of pertussis in young children
throughout the United States and other de-
veloped countries (16). Its use, however, was
associated with local reactions, fever, and
seizures and was considered too toxic for
adults (17) Some accused DTPads of causing
CNS injury, but this was disproved (18, 19).
However, the ensuing publicity resulted in
the decreased use of pertussis-containing
vaccines that persists to date. In addition,
many criticized the intracerebral (i.c.) chal-
lenge assay as not being related to vaccine-
induced immunity to pertussis. However, i.c.
challenge of mice with viable B. pertussis
mirrors the events in human pertussis: first,
the organisms do not cause a blood or pu-
rulent infection during infection but adhere
to the cilia of the bronchi during disease and
to the cilia of cerebral ventricles in the assay
(both respiratory and CNS cilia have a com-
mon ectodermal origin) (20). Second, only
pertussis toxin (PT) antibodies, whether ac-
tively induced or passively administered, con-
ferred protection against lethal infection
in mice including the Food and Drug Ad-
ministration assay (21, 22). We wonder why
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the pertussis vaccine is not controlled by mea-
surement of serum neutralizing antibodies
(antitoxin) as is done for DT (23). Unfortu-
nately, there are no published regulations for
the current acellular pertussis vaccine by the
US Food and Drug Administration.
It was a contribution, by the sameMargaret

Pittman, that expanded our understanding of
pertussis on a molecular level and that in-
spired scientists to study this disease (24). She
reasoned that pertussis was a toxin-mediated
disease and that the toxin was the cause of the
many biologic effects ascribed to B. pertussis
such as histamine sensitization factor, lym-
phocytosis-promoting factor, islet cell activa-
tion factor, and protective antigen. Scientists
soon isolated the PT, elucidated its amino
acid structure and DNA regulation, and
developed mutations that preserved its im-
munogenicity while eliminating its toxicity
(25–28). An acellular bicomponent vaccine
containing PT and filamentous hemaggluti-
nin (FHA), was shown to be safe and effec-
tive in Japan (29). Purification of other
B. pertussis components led to several acellu-
lar licensed vaccines composed of one to five
components (30, 31). The combination of pu-
rified proteins, including diphtheria, tetanus,
and pertussis proteins and Haemophilus
influenzae type b conjugate in one vaccine
induced Arthus reactions in recipients of
more than three injections of the combina-
tion vaccines (32, 33). Accordingly, the lev-
els of DTx in acellular pertussis vaccine
for individuals >12 y of age was lowered
(Tdap), which resulted in the disappear-
ance of the Arthus reactions (33). In in-
dividuals who did not have pertussis or
were not vaccinated with pertussis-contain-
ing vaccines, one injection of Tdap failed to
induce protective levels of IgG anti-PT (100
IU), and its overall effectiveness in >13 y
olds was estimated to be only 53% (34).
The wide resurgence of pertussis initiated
calls for an improved vaccine (4–7, 35). How-
ever, there is no agreement about how to
improve acellular vaccines that may contain
one to five protein components. There is,
however, agreement that pertussis toxoid
(PTx) is an essential component of cellular
and acellular vaccines (36). The evidence for
this is as follows. (i) Low levels of anti-PT
were related to susceptibility to infection with
this pathogen (37, 38). A monocomponent
PTx showed efficacy in a field trial in Sweden
(39). This same PTx has been used in Den-
mark as the only pertussis vaccine for 15 y
(40, 41) and its efficacy is similar to that of
the multivalent vaccines, and there has been
no pertussis epidemic in Denmark since 2002
in contrast to neighboring countries, where
epidemics have occurred. (ii) A convalescent

level of ≥100 EU (ELISA units) to PT is the
only reliable method for serologic diagnosis
of pertussis (42). No valid data assign pro-
tective activities to the other vaccine proteins:
(i) FHA did not confer immunity against
intracerebral or pulmonary challenge with
B. pertussis in mice by active or passive im-
munization with monoclonal or polyclonal
antibodies (21). (ii) FHA and pertactin anti-
bodies, induced by infection with Bordetella
parapertussis, do not confer immunity to per-
tussis (there were no PT antibodies) (43, 44).
(iii) A cellular pertussis vaccine without FHA
(Lederle Laboratories), once used for routine
immunization of infants in the United States,
had similar protective activity as vaccines
containing FHA (45, 46). (iv) Inclusion of
FHA did not confer additional protection
to acellular pertussis vaccines or additional
therapeutic effect to passively administered
anti-PT (47, 48). (v) Neither active nor pas-
sive immunity to pertactin conferred protec-
tion to mice challenged i.c. (49). In one study,
a relatively high dose of pertactin (16 μg)
provided only incomplete immunity to mice
challenged in the upper respiratory tract,
whereas PTx conferred 100% protection at
half that dose (8 μg) (50). In humans, sero-
epidemiologic studies showed that pertactin
and FHA antibodies arose independently of
pertussis infection and did not prevent per-
tussis (51). (vi) Japanese regulatory agencies
have requirements only for FHA and PTx
(52). This experience in Japan, where pertus-
sis has almost been eradicated, indicates that
pertactin is not essential for induced immu-
nity to pertussis. (vii) Strains of B. pertussis
isolated from patients with pertussis that do
not express pertactin have been identified in
the United States, Europe, and Japan (53–55).
(viii) Not commonly appreciated is that con-
valescence from pertussis, at any age, does
not confer lifelong immunity to pertussis
(56, 57). In addition, indirect data showed
that addition of fimbriae to the four-compo-
nent vaccine adds only a small increment of
efficacy (not significant) (30). Lastly, some
have proposed to add adenylate cyclase or
outer membrane vesicles to this mixture,
but no efficacy for these investigative vaccines
has been published (58, 59).
PT antibodies induced by pertussis vac-

cines invoke two main actions. A primary
protective action, which is indirect, inhibits
the action of PT on phagocytic cells, thus
allowing them to opsonize the B. pertussis
(60). Similar to the effect induced by wide-
spread immunization with DTx, this indirect
effect of anti-PT accounts for the incomplete
immunity on an individual basis (∼80%
for both toxoids) (61, 62). Another effect of
anti-PT is to reduce coughing that, in turn,

decreases transmission of B. pertussis in the
susceptible population (21). Because B. pertussis
is an inhabitant of and a pathogen for humans
only, this reduced transmission results in
“herd” immunity.

From the above discussion, it follows that
improvement of the current pertussis vaccine
can begin with two steps: (i) removal of the
nonessential vaccine components; and (ii)
improving the essential component PTx by
using a nondenatured, genetically detoxified
mutant, one of which has been shown to be a
better immunogen than the chemically mod-
ified PTx at a smaller (1/5) dose (63, 64). A
third step will be discussed below.
Consistent with the observations on anti-

protein antibodies, the duration of vaccine-
and disease-induced IgG antiprotein wanes,
so that maximal level declines about 10-fold
in 2–5 y (65–68). Older children and adults
were not immunized with cellular pertussis
vaccines because of adverse reactions, leaving
many nonimmune individuals (17). We quote
AlisonWeiss: “booster immunization of adults
with acellular pertussis vaccine was not found
to increase bactericidal activity over pre-
immunization levels. Identifying ways to pro-
mote bactericidal immune responses might
improve the efficacy of pertussis vaccines”
(69). Because vaccine-induced IgG antibod-
ies to the surface polysaccharides of Gram-
negative pathogens induce a bactericidal ef-
fect and immunity, we studied the lipooli-
gosaccharide (LOS) of B. pertussis as a
potential vaccine component (70–72).

A Pertussis Vaccine Designed to Induce
Bactericidal Antibody
Protein conjugates of polysaccharides induce
antibodies whose protective levels may last
for decades even for the life of the recipient
(73). The reason is that polysaccharides are
composed of repeat small saccharides that are
common in nature and may stimulate cross-
reacting antibodies (74). Proteins, in contrast,
have a complex specific structure, with very
few cross-reactive structures, i.e., DT anti-
bodies are induced only by vaccination or
disease and that is the reason why most
proteins, such as PTx, elicit a comparatively
short duration of protective levels (3–5 y) (56,
57, 65–68).
LPS is both an important virulence factor

and a protective antigen of Gram-negative
bacteria. Protection induced by our Shigella
sonnei conjugates was related to the levels of
serum IgG anti–O-SP (71, 72). B. pertussis
lacks an O-specific polysaccharide domain of
its LPS, and is termed lipo-oligosaccharide
(LOS), differing from most enterobacteriacae
such as Escherichia coli and Salmonella, which
have an LPS (75). The B. pertussis LOS is

3214 | www.pnas.org/cgi/doi/10.1073/pnas.1324149111 Robbins et al.
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expressed in two forms denoted as bandA and
band B, distinguished by a terminal tri-
saccharide of band A at its nonreducing end
(76, 77). Alone, B. pertussis LOS is a poor
immunogen due to its low molecular weight
(∼2,500 Kd) (75). Fever, usually assumed to
be mediated by the LPS, is not a common
finding in pertussis patients of all ages. Serum
LOS antibodies are found in children who
recovered from pertussis, indicating that this
saccharide is expressed during disease (78).
Neither cellular nor acellular vaccines reg-
ularly elicit bactericidal antibody (79–83).
Only some investigative vaccines induce bac-
tericidal antibodies and some “naturally oc-
curring” anti-LOSs elicit a cidal reaction with
B. pertussis (80, 83).

With the goal of regularly inducing anti-
bodies that have a direct bactericidal effect on
B. pertussis, we prepared conjugates of its
LOS core. We used Bordetella bronchiseptica,
reported to share the B. pertussis core struc-
ture, for ease of cultivation, and bound its
reducing end to BSA by oxime chemistry (84,
85). Several mutants were investigated; only
conjugates of the core saccharide with a sin-
gle trisaccharide at the nonreducing end, with
about eight chains per protein carrier, in-
duced high levels of bactericidal antibodies
(86). Because of its availability, we used BSA
but we plan to use the genetically altered
PTx modified by Arg-9 to Lys and Glu-
129 to Ala of the S1 peptide, as the carrier
protein (23, 25) to provide both anti-PT

and bactericidal antibodies. This ap-
proach is feasible because we showed that
PT can serve as a carrier for pneumo-
coccus type 14 polysaccharide (87). We
expect the bivalent conjugate-induced
antibodies to be fully protective and long-
lived. Because B. pertussis is an inhabitant
of and a pathogen for humans only, the
addition of an immunogen that induces
bactericidal antibodies opens the oppor-
tunity to combine high rates of immuni-
zation in infants with eradication of B.
pertussis. Such a conjugate will be simple
and less costly to prepare and should
confer a high degree of immunity for
a longer period than our current pertussis
vaccines.
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